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Abstract
Complex dynamics of a multichannel scattering may be treated by a variational
procedure. But the conventional variational principles are not readily applicable
because of (i) the intrinsic difficulties of unstable fluctuations in the calculated
amplitudes as functions of nonlinear parameters and (ii) lack of criteria to
optimize the solutions. A two-tier theory is formulated in which the complex
dynamical mixing and the asymptotic channel sector are treated separately, but
as a coupled system, such that the instability problem (i) is resolved naturally in
a mathematically consistent way, even when most of the weakly coupled open
channels are neglected. The resulting solution is stable, but not necessarily
optimal. Modified forms of hypervirial theorems are introduced to optimize the
solutions, thus rectifying the shortcoming (ii). Thus, the reformulated theory
for the scattering states, coupled with a properly chosen hypervirial theorem,
can be applied effectively to many-body, multichannel scattering systems.

PACS numbers: 03.65.Nk, 24.10.−i, 34.10.+x

1. Introduction

Analyses of a many-body system with more than two active particles require drastic
approximations. Whether an exact Hamiltonian of the system is known or a model Hamiltonian
is being studied, it is important that approximate solutions one obtains are reliable. The
current computational capability is such that any two-body scattering systems are numerically
solvable, essentially exactly. But for systems with three or more active particles, and with
more than two clusters as in a breakup, reliable solutions are not always readily obtainable.
The formulation in this paper should be especially relevant to analysing many-body scattering
systems with many open channels, including the breakup reactions but for practical reasons
not all of which can be explicitly included.

0305-4470/06/4514101+17$30.00 © 2006 IOP Publishing Ltd Printed in the UK 14101
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Figure 1. (1) The three regions of configuration space are indicated; the inner interaction region
I, the asymptotic region III and the matching region II. The boundaries between the regions are
generally not sharp, but the range R may be roughly defined that separates the different regions.
It may be different for each individual channel. (2) The R-matrix picture of the trial functions.
Construction of the variational trial functions are indicated to be localized, such that nearly zero
overlap between the functions in the I and III regions. The connection between these two regions
is made through �Iit, so that chance of singular roots of the M matrix is eliminated when �Pt is
treated variationally. (3) The structure of the trial functions is different for the two-tier approach,
as compared to that in (2).

The variational principles (VP) have been used with great efficiency in treating many-
body bound systems, mainly because of the powerful Ritz extremum principle (Ritz 1908,
Rayleigh 1937) that can guide the solution in terms of the boundedness of the system energy
spectrum. It is a minimim principle in that the calculated ground-state energy, for example, is
not only a stationary value but also a bound on the exact energy E0, although the latter is not
known a priori. Therefore, the solution can be systematically improved. This bound property
is a direct consequence of the fact that the shifted Hamiltonian M0 = H − E0 is positive
definite, M0 � 0, for the ground-state energy E0. An equally powerful approach for excited
bound states also exists in the form of Hylleraas–Undheim theorem (Hylleraas and Undheim
1930, MacDonald 1933).

The variational principles were then proposed (Hulthen 1944, 1948, Kohn 1948,
Schwinger 1950) for the scattering states, although the mathematical properties are quite
different. In fact, the VP are uniquely effective in treating the strongly interacting region, as
in the zone I of figure 1(a), where the complex dynamical mixing among the channels takes



Two-tier formulation of multichannel scattering theory and hypervirial theorems 14103

place, but the presence of the channel region II, with the scattering wavefunctions which are
not square-integrable, totally changes the situation. The channel region usually involves a
few clusters in continua, and its wavefunction contains all the asymptotic boundary conditions
which are pre-assigned, that include all the internal cluster functions specified. The matching
in region III of the solutions of regions I and II then provides the scattering amplitudes. The VP
for scattering states generally lack the crucial and useful properties of the bounded spectrum.
That is, the total scattering energy E is embedded in the spectrum of H such that M = H − E
can assume either sign, and thus in the error term. This has been the source of intrinsic
difficulties which have retarded their applications for many years: (i) unstable fluctuations in
the calculated amplitudes (Schwartz 1961a, 1961b, Wu and Ohmura 1962) as the nonlinear
parameters in the trial functions are varied, and (ii) there are no built-in criteria to guide the
solution to the correct value. Evidently, the shortcomings (i) and (ii) are the direct result of
the fact that the spectrum of the operator M is not positive definite in the case of scattering.

However, progress has been made in later years in deriving the approaches with the
bound properties for zero energy scattering (Spruch and Rosenberg 1960), and for low energy
scattering (Hahn and Spruch 1967) with a few open channels, where difficulties (i) and (ii)
were simultaneously removed. Specifically in the latter approach, the original spectrum of M is
divided into two parts, as summarized in the appendix, such that the resulting ‘closed channel’
operator MQ satisfies the inequality MQ � 0 for non-zero scattering energy. It is a rigorous
minimum principle, provided that all the open channels at a given E are separated from
MQ and are treated exactly numerically. But the required procedure to maintain the bound
property is often too rigid and cumbersome for ready applications. Although the complex
closed channel component in region I of figure 1(a) is still treated variationally, the necessary
projection operators to separate the spectrum into two parts are difficult to derive. In fact, the
requirement for the projection operators has been removed later in a generalized variational
bounds formulation (Hahn 1969, 1970), so that the minimum principle can be applied to
general multichannel scattering, as long as the number of open channels is not large.

The approaches with bounded MQ break down as the scattering energy E increases and the
number of open channels becomes very large, as in a breakup, such that, mainly for practical
reasons, a large part of the open channels has to be omitted. Almost all the theoretical
procedures available retain only some of the strongly coupled channels. Consequently, the
all-important bound properties of MQ are lost, and the methods which depend exclusively
on the boundedness of a modified (closed channel) energy spectrum for their validity are no
longer applicable. In this paper, we consider the scattering theory which does not require the
full inclusion of all the open channels for its validity.

Truncation of any part of open channels is an approximation, which can only be justified
a posteriori if the coupling to the neglected channels is weak. The bound principle is thus
lost, but the theory to be developed below does not depend on it.

The conventional VP for scattering are reviewed in section 2, and the difficulty (i) of
unstable fluctuation of the calculated amplitudes is illustrated. A new two-tier approach is
presented in section 3, which automatically removes the difficulty (i). A flow chart is provided
in figure 2 for clarity. Section 4 contains a series of hypervirial theorems which may be used
to test the variational solutions, thus remedying the difficulty (ii).

2. The conventional VP for scattering states and the instability difficulty

We first briefly review the original VP for scattering states and discuss the difficulties (i) and
(ii) mentioned in the previous section. A variational functional J {�t } is defined in terms of
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Figure 2. A flow-chart of the two distinct approaches (a) and (b) explored in this paper, where
tier 1 (T-1) and tier 2 (T-2) involve different homogeneous and inhomogeneous functions in the D
and C components, respectively. Approach (c) is also indicated, explicitly showing the coupled
channel (CC) and VP treatments of the two components, and emphasizing the essential dependence
on the HVT. All three approaches end up with the total wavefunctions, which, when converged,
should be equivalent.

the trial function � t which may contain one or more linear (cst) and nonlinear (dq) parameters
and approximate amplitudes χit . That is,

J {�t } = χt + (�t , [H − E]�t). (2.1a)

All the open, as well as closed, channel boundary conditions are assumed to be properly
incorporated in the trial function. In general, χt is a sum of χti with given initial conditions
ai, with i = 1, . . . , NP , for a total of NP open channels at a given total energy E. For example,
χit = ∑

j aiKijtaj , for the reactance matrix K. The actual form of the functional can be
somewhat different for the Hulthen, Kohn and Schwinger and other types of VP, but our
discussion does not depend on its explicit form. The improvements to be made in the next
section should be applicable to all cases.

Thus, the trial function in a variational treatment is written conveniently in two parts as

�t = �Ct (χt , a) + �Dt (c, d), (2.1b)
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where the subscripts C and D simply denote the solutions with emphasis on the asymptotic
channel and the dynamic reaction/diffusion components, respectively. The C part carries
exclusively all the open channel boundary conditions in region II, while the D part
predominantly describes the reaction zone I, but carries no explicit asymptotic channel
information. Besides, the functional form of �Ct is pre-chosen.

These two components overlap (preferably mostly in region III), so that they are nearly
mutually orthogonal because of spatial separation. In the case of the so-called PQ formulation,
as summarized in the appendix, the separation is carried out in some configuration (state)
space, to achieve the orthogonal separation. The separation in (2.1) does not require such
orthogonalization. The two parts can carry individually much of the overlapping information
of region I; obviously this is not economical, and an approximate orthogonalization between
the two components may be more effective.

We may set

�Ct =
NC∑
i=1

ai�Cit (χit ) (2.1c)

for NC (≡NC) open channels, where �Cit are further specified as �Cit = ψit uit. In the
case of a two-cluster channel, for example, the internal cluster function is ψit = ψ i1tψ i2t,
and uit is the inter-cluster function which is expressed in terms of the in-coming and out-
going wavefunctions of known forms. (Proper symmetrization is assumed.) By contrast, �Dt

describes the scattering function in the diffusion region I, and is usually constructed in terms
of square-integrable trial functions �st as �Dt = ∑ND

s=1 cst�st (d), ND (≡ND), where cst are the
ND linear variational parameters and the d’s are nonlinear parameters, d{dm;m = 1, . . . , Nd}.
The conventional VP approach relies on the �Dt part to represent the complicated dynamics
in the interaction region, just as in the bound state case, while �Ct covers both regions II and
III. The linear parameters in �Dt are then determined by the VP procedure, connecting the
two solutions, but the nonlinear parameters d cannot be optimized. Optimal determination of
the d’s requires criteria outside the VP (section 4). Variations of the functional J with respect
to the linear parameters c and amplitudes χ provide the conditions that these parameters must
satisfy to make J stationary; that is, the error δχt in the calculated χt is at least second order
in the error δ� t. Here, the χt ’s behave like linear parameters in so far as the variation of J is
concerned. Thus, we have from (2.1) δJ/δ� t = 0 which can be rewritten as

δJ/δ�Ct = 0 → δJ/δχit = 0, or δJ/δuit = 0, i = 1, . . . , NC, (2.2a)

δJ/δ�Dt = 0 → δJ/δcst = 0, s = 1, . . . , ND. (2.2b)

Equations (2.2) provide a set of algebraic equations that define the variational parameters χ ’s
and c’s, and must be solved simultaneously, iteratively. The nonlinear parameters d’s are
pre-chosen rather arbitrarily, and are again not determined by the above variations.

The VP for a scattering system, as defined above, is known (Schwartz 1961a, 1961b) to
give wildly fluctuating amplitudes (e.g. tangent of phase shift) for some values of the nonlinear
parameters, while forming one or more stable plateau regions for other parameter values, as
illustrated in figure 3(a). The regions of such unstable fluctuations are not sharply defined
when the number of linear parameters is small, but become more numerous and exhibit sharper
peaks/valleys as more linear parameters are added. The stable plateau regions also become
flatter in between the sharp peaks, and eventually the plateaus flatten out, presumably at the
‘correct’ value for the amplitude. Such erratic behaviour, the difficulty (i), as well as (ii)
the lack of criteria for optimization of the solution, was the main reason for retarding the
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Figure 3. Typical behaviour of a variationally calculated amplitude χt as a function of one of the
nonlinear parameters d is illustrated, in which both the unstable fluctuating (UF) and stable plateau
(SP) regions are indicated. As the number of linear parameters grows, the boundaries between
the UF and SP regions become sharper, and presumably the SP regions tend to become more flat
around the value of the true amplitude. The calculated amplitude then becomes insensitive to
particular values of the nonlinear parameter. Jt = −iFt.

application of VP to scattering systems for all these years. In view of the potentiality of the
VP approach in treating region I, we re-examine and improve the method in this paper.

The fluctuations noted above and illustrated in figure 3 are presumably caused by the
vanishing denominators of the variationally defined linear parameters, as a direct consequence
of the absence of bound property of the operator M = H − E. They occur at particular
values of nonlinear parameters contained in �Dt . First, we analyse the contents of (2.1b).
Variation of J with respect to the c’s gives a set of ND equations for the c’s, as

cst = −
∑

s

(M)−1
su Bu, (2.3)

where M is an ND × ND matrix with elements

Msn = (�st ,M�nt ) and Bnt = (�nt ,M�Ct ). (2.4)

The inverse of M involves its determinant, det(M) = �smst, where mst are the roots of M and
the �D

st are the corresponding orthonormal basis functions. The superscript D denotes the
homogeneous solutions, properly orthonormalized. We then have simply

cst = −(
�D

st ,M�Ct

)/
mst . (2.5)
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The roots mst depend on the values of the nonlinear parameters d in the trial functions �D
nt ,

which are the linear combinations of �nt’s. The fluctuating instability occurs mainly when
one or more of these roots mst are close to zero, making the corresponding cs’s very large, to
be discussed fully in section 3.

The second source of the difficulty (i) may also be present with �Ct when it is also treated
variationally in the original VP. However, as indicated by (2.1c), the form of the �Ct is such
that the variations of J with respect to the u’s give a set of coupled equations, which can
readily be solved exactly, as long as the number of open channels explicitly retained is small.
Therefore, throughout the paper, we treat only the complex D part variationally, while the C
part is to be solved exactly by the coupled channel method. This is a minor, but practically
important, updating of the original VP. This not only makes the present formulation converge
to the minimum principle when all the open channels are explicitly included in the C part, but
also clearly shows the crucial extension of the theory where the extremum principle becomes
inapplicable.

Several attempts have been made in the past (Harris 1967, Nesbet 1969, Callaway 1978,
Nesbet 1980) to remedy the difficulty (i), but some of them are either incorrect or not very
effective. We present in section 3 a complete discussion of the remedies in a general and
coherent picture. It is now apparent from the structure of the coefficients c in (2.5) that the
necessary improvement may be carried out in three different, but somewhat related, ways, as
the parameter cr with mrt ≈ 0 is given in terms of mrt , �D

rt and �Ct . Thus, as illustrated in
figure 2, we can proceed in three different but related ways:

(a) Avoid the use of (2.5) for the �D
rt with mrt = 0, and include it in �Ct such that Brt also

vanishes.
(b) Definition of mD

rt may be changed by using a modified M, similar to MDCD of the appendix,
so that the denominator in crt need not vanish simply because mrt = 0.

(c) Finally, �D
rt may be changed by adjusting the nonlinear parameters, so that none of the

m’s vanish, and the c’s are changed.

Approaches (a) and (b) will be discussed in the next section, the former having been
discussed recently (Hahn 2006). The approach (c) is direct and simple, but requires information
on the degree of instability and optimization, and thus depends heavily on the hypervirial
theorems of section 4.

3. The two-tier approach to improved VP for scattering states

Improvement of the conventional VP to remedy the instability problem discussed in section 2
is very much facilitated by a reformulation of the VP via a two-tier approach. The past
conceptual misgiving seems to have been in the combined treatment of the scattering problem
using the single functional J, although the trial function is always constructed in two parts
as in (2.1) and (2.2). As stressed earlier, it is essential to recognize that the scattering case,
with continuous spectrum and non-square integrable wavefunctions (in a Banach space), is
mathematically different from the bound state case with discrete point spectrum and square-
integrable wavefunctions (in a Hilbert space). The oscillating asymptotic boundary conditions
for the open channels require special treatment. Thus, in a typical R-matrix picture (Lane and
Thomas 1958, Newton 1982, Goldberger and Watson 1964), the ‘interior’ interaction region
I and the other asymptotic channel region II of figure 1(a) are first treated separately and
then joined at region III. By contrast, in the PQ formulation of the appendix, an orthogonal
separation is introduced not in the coordinate space, but in the configuration space. Still
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another possible approach is to separate the homogeneous and inhomogeneous solutions of
the coupled C+D problem, and this aspect is explored below.

The two-tier approach to scattering problems is not new (Hahn 1974a, 1974b), but
we emphasize here by explicitly arranging the theory in two tiers, bringing out clearly the
homogeneous and inhomogeneous solutions of the fully coupled problem. It would facilitate
the removal of the instability difficulty. Thus, tier 1 deals with the homogeneous solutions,
both for the C and D components, denoted by the �C

C associated with the �C equation (as well
as GC

C) and �D
D for �D (and the Green’s function GD

D). The subscript t denotes approximate
trial quantities. In tier 2, the coupling between the C and D components is treated; matching
the two components in region III is through the determination of the parameters cn’s and χ ’s
in �D and �C, respectively. The necessary improvement of the VP to make the solution stable
then follows naturally.

The two-tier approach is distinct from the conventional reaction theory with the P–Q
operators in that the strong orthogonality requirement PQ = 0 is relaxed, although the overall
structure is similar. For ready comparison, therefore, the latter is briefly summarized in the
appendix. The difficulty of explicitly deriving the operators P and Q is well known and this
has no direct relevance to what we discuss below.

Two sets of coupled equations are generated by (2.2), which admit both the homogeneous
and inhomogeneous solutions as

�Ct = �C
Ct + �X

Ct and �Dt = �D
Dt + �X

Dt , (3.1)

where the superscripts C and D denote the homogeneous solutions and the X for the
inhomogeneous solutions that mix the C and D components. In general, the C and
D components are not mutually orthogonal, but the usual relations associated with the
homogeneous and inhomogeneous solutions exist.

Tier 1. The homogeneous parts of the C and D components are first treated. Thus, we
have

JCC
{
�C

Ct

} = χC
Ct +

(
�C

Ct ,M �C
Ct

)
(3.2a)

JDD
{
�D

Dt

} = (
�D

Dt ,M�D
Dt

)
. (3.2b)

Equation (3.2b) results in a set of square integrable trial functions and diagonalization of the
energy matrix, as in (2.4), resulting in an orthonormal set {�Dnt} and mnt, n = 1, . . . , ND. In
particular, for the root mnt = 0 (and perhaps for mnt ≈ 0) (2.5) blows up, and so we set instead

�D
Dt = c′

rt �Drt with mrt = 0, (3.3)

where c′
rt is yet unspecified. This is the ‘on-shell’ part of �Dt , and in principle could be

included in the channel part �Ct which represents mainly the on-shell part of the solution.
In fact, this was done in resolving the difficulty (i) in the approach (a), as proposed recently
(Hahn 2006). With the �D

Dt included in �Ct, the two rearranged functions

�on
t = �Ct + �D

Dt and �off
t = �Dt − �D

Dt (3.1a)

are now roughly orthogonal to each other (provided �on
t ∝ �D

Dt in region I). In so far as the
C part is concerned, we assume that the exact numerical solutions �C

Ct of the homogeneous
equations derived by (2.2) can be obtained, rather than treating it variationally.

Tier 2. Calculation of the inhomogeneous solutions involves the Green functions for the
homogeneous equations. The necessary functionals that employ the homogeneous solutions
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obtained above can then be written, following the structure of the equations similar to (A.4),
as

JC{�Ct } = χt +
(
�Ct ,

[
M + MGD

DtM
]
�Ct

)
+ 2

(
�Ct ,M�D

Dt

)
(3.4a)

JD{�Dt } = (
�Dt ,

[
M + MGC

CtM
]
�Dt

)
+ 2

(
�Dt ,M�C

Ct

)
. (3.4b)

It is noted that (3.4a) and (3.4b) are mathematically disjoint, as for example �Ct in (3.4a)
is determined without the �Dt, or rather �X

Dt , and vice versa for the �Dt without the �X
Ct in

(3.4b).
First for the D part. Within the space spanned by the set generated in (2.4), we may write

the Green function and the inhomogeneous solutions as

GD
Dt =

ND∑
n�=r

(�Dnt )m−1
nt (�Dnt ) (3.5)

and

�X
Dt =

′∑
n�=r

cnt�Dnt , (3.6)

where cnt are to be determined by the matching, as in (2.5), and the sum does not include the
mrt = 0. On the other hand, the inhomogeneous solution �X

Ct of the C part requires an explicit
evaluation of the GC

Ct associated with the homogeneous equations. Such functions are often
difficult to evaluate, but, since GC

Ct exclusively appears in �X
Ct only, its effect can be dealt

with by directly solving the relevant coupled equations for �on
t , with proper outgoing (or the

cosine functions) boundary conditions, and the relevant part �X
Ct can be separated from �Ct .

The MGC
CtM term in (3.4b) provides the necessary shift, and decouples the two components.

Thus, variations of JD give immediately a ND × ND energy matrix of MC = M + MGC
CtM to

be diagonalized. The new set �C
Dnt and mC

nt are such that mC
nt ≈ mnt + �nt, where n includes

the state r for which we had originally mrt = 0. We now have

cC
nt = −BC

nt

/
mC

nt , where BC
nt = (

�C
nt ,M�Ct

)
, (3.7)

for all n, including n = r. Thus, we no longer have any of the cC
nt blowing up. This is the

approach (b) via the two-tier formulation and the instability difficulty (i) has been resolved. Of
course, when the C component contains all the strongly coupled channels, we expect (Hahn
1970) a strong GC

Ct such that �nt is large for all n (and perhaps even mC
nt > 0).

To focus specifically on the inhomogeneous solutions, we may replace (3.4) by a simpler
set of functionals which do not contain the approximate Green functions, specifically the GC

Ct .
We have

J ′
C

{
�X

Ct

} = χD +
(
�X

Ct ,M�X
Ct

)
+ 2

(
�X

Ct ,M�Drt

)
c′
rt + 2

(
�X

Ct ,M�X
Dt

)
(3.8a)

J ′
D

{
�X

Dt

} = (
�X

Dt ,M�X
Dt

)
+ 2

(
�X

Dt ,M�C
Ct

)
+ 2

(
�X

Dt ,M�X
Ct

)
. (3.8b)

The variation δJ ′
D

/
δ�X

Dt = 0 gives cnt = −BDnt/mnt, n �= r, where BDnt = (�nt, M�Ct ).
However, since BDnt contain two terms, BDnt = BC

Dnt + cnt�nt, we have cnt = −BC
Dnt

/
[mnt +

�nt], where BC
Dnt = (

�Dnt ,M�C
Ct

)
, as in (3.7), and �nt = (

�Dnt ,MGC
CtM�Dnt

)
. That is,

cnt ≈ cC
nt of (3.7). Generally, the shifts �nt are large when the m’s represent pseudostates,

while they become rather small for true resonances due probably to the orthogonality relations
discussed in the appendix.
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We have described above the approach (b) in a mathematically transparent way, and now
consider the equivalence between the approach (b) described above and that of (a) proposed
recently (Hahn 2006), both designed for removing the difficulty (i). In fact, in (3.3), we noted
that the parameter c′

rt in �D
Dt was not yet defined. It appears on the inhomogeneous term in JC

and thus �X
Ct will depend on it. As a consistency condition, we then required in approach (a)

that the integral

(�rt ,M�Ct ) = −mrtc
′′
rt (=0 for mrt = 0) (3.9)

give c′′
rt = c′

rt . (3.9) implies that the right-hand side can vanish because of mrt , but not by c′′
rt .

To further show the equivalence between the results obtained by (3.8) and (3.9), we
assume that �Dt

(
ca
rt

) = �X
Dt + ca

rt�Drt and construct a functional

J ′′
D

{
�X

Dt , c
a
rt , c

b
rt

} = (
�Dt

(
ca
rt

)
,M�Dt

(
ca
rt

))
+ 2

(
�Dt

(
ca
rt

)
,M�C

Ct

)
+ 2

(
�Dt

(
ca
rt

)
,M�X

Ct

(
cb
rt

))
,

(3.10)

where the crt dependence is explicitly exhibited, distinguishing the two, ca
rt associated with

�Dt and the other cb
rt with �X

Ct . Now, if cb
rt in the last term of (3.10) is held fixed during the

variation of ca
rt , we are back to (2.1) and (2.2), and the difficulty (i) remains. On the other hand,

if we let ca
rt = cb

rt and let them vary together, we have essentially recovered (3.8b), without the
explicit use of the Green function. This is the contents of the consistency condition (3.9) for
the normalization crt of �D

Drt . Of course, in original (3.8b), the functional does not include this
homogeneous term, so that no difficulty (i) appears. This concludes the equivalence proof.

The approach (a) was formulated in a somewhat intuitive way, mainly to simplify the
calculational procedure. But its theoretical basis is presented here, showing that the remedy
for the difficulty one is uniquely given by either (a) or (b). Furthermore, still simpler approach
(c) will be discussed in section 4, as it depends heavily on the hypervirial theorems. In some
previous treatments of the difficulty (i), the crt that controls the short-range behaviour was
mixed up with the amplitude χt that is prominent only in the asymptotic region. It should also
be noted that, as the homogeneous parts (�C

Ct and GC
Ct ) of the C sector improve, with more

open channels added, the theory based on (3.4) approaches the minimum principle, mainly
because of the orthogonality relations (A.5) of the appendix.

4. Quality test of approximate solutions and the hypervirial theorems

We now discuss the shortcoming (ii) of the conventional VP, that is, lack of criteria to judge
the ‘goodness’ of a solution, and also to optimize the nonlinear parameters in the variationally
determined solution. Although the improved VP formulated in section 3 should eventually
converge to the correct solution, not necessarily monotonically, the availability of a criterion to
test the quality of the solution and optimizing it will make the VP more readily applicable. In
this section, we consider the hypervirial theorems (HVT) that may provide such a constraint.

The HVT were studied previously (Hirschfelder 1960, Epstein and Hirschfelder 1961,
Epstein and Robinson 1963, Demkov 1961, McElroy and Hirshfelder 1963, Robinson and
Hirschfelder 1963), mainly to derive relationships between the wavefunctions and phase
shifts. Some perturbative HVT approaches were also studied (Killingbeck et al 2001, 2004).
Presumably, previous applications of the HVT to scattering states have been limited because
of the presence of the instability problem (i); the HVT is inoperative when the nonlinear
parameters are in one of the unstable zones. Therefore, the formulation of section 3 that places
the solution in the stable region is crucial in making the HVT effective. In fact, the hypervirial
integrals are very sensitive to the amplitude fluctuations, and this sensitivity can in turn be
used with great advantage to identify the unstable regions.
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(4.a) The HVT is derived from the identities (� ′′, WM� ′) = 0 and (M� ′, W� ′′) = 0,
where � ′ and � ′′ are the two degenerate exact scattering solutions and where W is a so far
arbitrary virial operator, and we have M = H − E, H = K + V. By partial integrations of
the second integral, and then subtracting the first integral from it, we have the general virial
integral

R = F + {BC;K) = 0 (4.1a)

with

F ≡ (� ′′, [M,W ]� ′) = (� ′′, [H,W ]� ′), (4.1b)

where {BC;K} denotes the boundary contribution coming from the partial integrations that
involve the kinetic energy operator K. That is, in a one-particle system, for example,

{BC;K} = −(1/2)

∫
[(W� ′′)∇� ′ − � ′∇(W� ′′)] dS. (4.2)

Note that the expression for F is explicitly E independent; only the wavefunctions carry this
information when M is replaced by H in the commutator. The two expressions are of course
completely equivalent. With � ′ = � ′′ and choosing a special W such that {BC} = 0, we have
R = F.

When the exact �’s in F are replaced by an approximate solution �a (subscript a to
distinguish from the variational functions with the subscript t), we have the corresponding Fa

given by

Fa = (�a, [M,W ]�a) ≡ (�a, [H,W ]�a), (4.3)

where the integration volume need not be the full coordinate space. Although the error function
ϕa ≡ �a − � is not known in general, the quantity M�a = ξ a can be calculated explicitly, and
this is the theoretical basis of Fa as a test integral. The two expressions in (4.3) are equivalent,
but the first integral involving M = H − E illustrates the error content of Fa more explicitly
(Hahn and Zerrad 2006a, 2006b). Thus, as the �a improves and approaches the exact solution,
we expect the Fa to vanish

Fa]SP → F = 0 as �a → �, (4.4)

provided that the approximate solution is in the stable plateau (SP) zone.
The virial operator W is so far unspecified, except for the boundary behaviour. There are

many possible choices; following the original virial theorem, we may construct for example
a form W = f • ∑N

i=1 ri • pi , where f decays to zero at the boundaries, not necessarily at
ri → •. Typical forms for f may be rm exp(−αr) or rm exp[−β(r − an)

2], with m = 0, 1,

2, . . . , etc.
Several comments are in order. First, the virial integral (4.1) is satisfied if the �’s are

the solutions of the scattering equation, independent of the size of the integration volumes
involved, because M� = 0 is valid locally. Therefore, (4.3) may be used to test the approximate
solutions locally in a small volume, or over the full configuration space. Secondly, because
of the presence of the commutator, (4.4) is a necessary but not a sufficient condition for the
correct solution. That is, for some simple choices of W or �a, Fa may vanish identically. This
spurious cancellation of the integrand and thus Fa itself is the basic weakness of the HVT as
a test. A partial remedy is to introduce an anti-commutator F (+)

a = (�a, {M,W }+�a), which
should also vanish for the exact solution and is now explicitly E dependent. Thirdly, by a
proper choice of W, we made the BC terms vanish in (4.3). The resulting HVT can thus be
applied simply to scattering problems, as with the usual virial theorem for the bound states.
Evidently, such a form of HVT cannot test the boundary conditions.
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Figure 4. Typical behaviour of the virial integral and correlation between the virial integral F
and the calculated cross section is displayed as functions of one of the nonlinear parameters in
�Qt. The example chosen is the collisional ionization cross section, evaluated by the generalized
Hartree–Fock approach and configuration mixing with one linear parameter c. The quasi-extremum
feature between |Fa | and the energy differential cross section σ a has been attained by a careful
construction of the trial functions in the improved VP and the use of a HVT. Of course, such a
correlation is possible if and only if all the nonlinear parameters are in one of the stable plateau
regions of parameter space. Application of the theory to an actual realistic ionization model bears
this out. Although |Ft| is expected to become smaller as the trial function improves, the calculated
cross section may assume a maximum, as illustrated here, or a minimum (in an inverted form),
depending on the magnitude of the phase shifts (or K matrix), in different quadrants.

As the nonlinear parameters d’s in �Dt for example are varied, but still remaining within
the stable region, it is possible to find the ‘bottom’ of the stable hyperplane in the parameter
space by watching the magnitude of the |Fa| integrals; the bottom of the plane is indicated
by the minimum of |Fa|, as illustrated in figures 4 and 5. The smallest |Fa| corresponds to
the ‘best’ choice of the variational parameters. A similar feature was found in an extensive
numerical study of some model systems (Hahn and Zerrad 2006a, 2006b). With all the
nonlinear parameters in the plateau regions, we then have a pseudo-minimum principle in the
form

Min|Fa|]SP ⇒ [the best set of variational parameters], (4.5)

where, unlike in the previous minimum principles, the boundedness of the energy operator
M and its modified forms are not required. However, two cautionary points must be noted;
the convergence discussed above may not always be monotonic, and sometimes breaks down,
possibly due to spurious cancellations in the virial integrals. Further, for a localized W, for
example, an improvement in the wavefunction in one limited area may not necessarily give an
improved scattering solution. To avoid this problem, more than one area in the configuration
space may be tested.

(4.b) HVT and variational wavefunctions. Form (4.3) is not yet in a useful form to rectify
the shortcoming (ii). For both bound and scattering states, consider the single HVT integral
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Figure 5. Sensitivity of the virial integrals Jt = −iFt to unstable fluctuations of variational
wavefunctions is illustrated, and is compared with that of the amplitudes, all as functions of
nonlinear parameter sets in a Nd dimensional hyperspace, denoted simply by d. This property
may be used to sharply define the unstable fluctuating (UF) and stable plateau (SP) regions of the
nonlinear parameter space. (See figure 3) Since the HVT is effective only for those functions with
the parameters in the SP regions, identification of the SP region becomes important in validating
the behaviour (4.3) and (4.4). The solid line arrows indicate the SP zones, while the dashed
arrows show the UF regions. Usually, the ‘best’ nonlinear parameter set occurs near the SP/UF
boundaries, as expected from the discussion given in section 3.

in a slightly different form as

Rt = (�t ,W [E − H ]�t) = (�t ,W [E − H ]ϕt)

= (H�t,Wϕt) − (�t ,WHϕt)

= (�t , [H,W ]ϕt ) + {BC;K,ϕt }, (4.6a)

which explicitly shows the first-order error term in terms of the error function ϕt = � t − �,
for the trial and exact wavefunctions, � t and �, respectively. Again we have M� = 0 and
M� t = Mϕt. Equation (4.6a) explicitly shows that the hypervirial integral examines the error
in the approximate solution. As � t → �, we expect Rt → 0.

Furthermore, for W which does not necessarily vanish at the boundaries, Rt is related to
Ft = (� t, [H, W] � t) = (� t, [M, W]� t) by

Rt = Ft − (M�a,W�a) + {BC;K|�a,W�a}. (4.6b)

The difference between the Ra and Fa in (4.6b) goes to zero with improved functions and
for vanishing boundary contributions, but for approximate solutions, this difference may be
significant and useful in applications.

We show below that any variationally determined solutions automatically satisfy the HVT,
for all W, to first order in the error function ϕt. For a variational principle, with the trial function
�a → � t, we have the usual VP given by

δχ ≈ (�t , [E − H ]�t), with (�t , [E − H ]ϕt ) ≈ 0, (4.7)

to second order in ϕt ≡ � t − �. Here the variationally determined Et is replaced by its exact
value, as the error is also of second order. That is, the first-order terms in the variational
integrals are made to vanish. Note that, with W = 1, (4.5) becomes a variational integral of
section 2.
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Now, we compare (4.5) and (4.6). Since the virial operator W is still left unspecified, we
may set the error function ϕt to be of the form [15]

ϕt = iW�t. (4.8)

Substitution of (4.8) into the variational integrals in (4.6) gives

0 ≈ (�t , [E − H ]W�t) ≈ (H�t,W�t) − (�t ,HW�t) = (�t , [H,W ]�t) − {BC}t ,
(4.9)

which is precisely (4.5), all valid to second order in ϕt. That is, all the terms in (4.5) and
(4.6), which are linear in ϕt, drop out. Therefore, in so far as the variationally determined
wavefunctions are concerned, the HVT integrals with the variational � t vanish to first order
for all W, and thus provide no additional information on the quality of the solutions. This
equivalence proof between the VP and HVT depends on the special choice (4.8) as well as on
W, and does not imply that one can replace the VP by HVT or vice versa.

Now, with the HVT available, we can consider the third option (c) of fixing the VP, as
mentioned in section 3. That is, the nonlinear parameters in �Da may be varied in such a way
that any zero roots mrt may disappear. However, this can be carried out sensibly only if the
variation places the parameters in the stable zone. As noted earlier, the use of the HVT is thus
essential in facilitating this procedure, not only in searching the stable zone in the parameter
space, but also to optimize the solution. The final solution must be the same as that produced
by approaches (a) and (b) discussed in section 3. Because the search for the SP region using
the HVT is equivalent to the procedures of (a) and (b), the optimization is carried out in all
three cases using the HVT. Obviously, approach (c) relies entirely on the HVT. Usually, it has
been found that the ‘best’ set of nonlinear parameters is given close to the edge of the stable
zone.

The HVT is especially effective when only a few linear parameters are involved. Unlike
in the conventional VP treatment of the scattering problems, where a large number of linear
parameters are usually required before the solution starts to settle, we can obtain with this
improved VP/HVT approach a sensible amplitude even when only a few linear parameters
are involved.

5. Summary and discussion

We have reformulated the multichannel scattering theory as a two-tier approach, in which
both the instability difficulty (i) and the lack of test criteria (ii) are treated in a natural and
mathematically consistent way. A set of strongly coupled channels is explicitly described in
the channel component �Ct , while many (often infinite in number) weakly coupled channels
may be omitted for practical reasons. This omission in turn takes away the bound property
of the theory and introduces the difficulty (i). Three different, but mathematically equivalent,
approaches have been discussed for (i). Thus, the troublesome component in the �Dt is
identified and properly treated, either incorporating it in the modified Hamiltonian, as in (3.4)
and (3.8) or shifting it to the channel part �Ct, as in (3.1a) and (3.9). The coefficient crt

associated with the root mrt = 0 is, instead of blowing-up, determined in terms of the shift
and/or by the new consistency condition. The very component that gives rise to the breakdown
of the VP and instability has been retained. The theory is now stable, without the difficulty (i).

For optimization of nonlinear parameters, the shortcoming (ii) of the conventional VP
is rectified by introducing the HVT in section 4, which is effective only if the nonlinear
parameters are already in one of the stable regions of the parameter space. The virial integral
Fa = (�a, [W, H]�a) is made simple by a suitable choice of W, which resembles the theorems
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for the bound states. Thus we have Min |Fa| for a optimal set of nonlinear parameters. Several
possible choices for W have been discussed, including that decay asymptotically to erase the
boundary contribution. This aspect of the problem will be discussed further with numerical
examples in a separate report (Hahn and Zerrad 2006a, 2006b), where the applicability of
the HVT with various practical constraints is examined. Several applications of the theory to
specific scattering (and breakup) systems are in progress, the detailed results of which will be
reported elsewhere (Zerrad and Hahn 2006).

The main result of this paper is given by (3.4)/(3.8), (3.9)/(3.1a) and (4.3)/(4.4). The
improved VP with HVT is now applicable to scattering systems, almost as effective as the
Ritz principle is for the bound states and the minimum principles for low energy scattering,
even when parts of weakly coupled open channels are omitted and the bound property is
absent. The HVT have to be used with caution, however, since the |Fa| = 0 is not a sufficient
condition for the improved solution. With more of the strongly coupled channels retained, we
expect that the theory should become more robust and effective, while the previous approaches
with the bound property break down. Of course when all the open channels are explicitly
included in �Ca, the present theory converges to that of the minimum principle. The theory of
sections 3 and 4 is a direct extension to higher energies of the usual coupled channel method
with pseudo-potentials (-states), where the ever-present problems of (i) and (ii) have been
resolved. The HVT plays an essential role in optimizing the potential parameters.

The unitarity correction for the neglected, and presumably weakly coupled, open channels
becomes important, especially when some of the neglected channels are collectively also
strongly coupled. A number of known methods can be applied, including the all-inclusive
projection operators in the semiclassical approximation (Hahn and Watson 1972, 1973), but
this problem warrants a careful discussion elsewhere.

6. Appendix. Formal structure of the reaction theory

This appendix summarizes a typical reaction theory that provides a guide to the overall structure
of the two-tier approach given in section 3, but much of the details, including the orthogonality
property, are quite different. It is in sharp contrast with the R-matrix formulation.

In terms of a set of projection operators P and Q, with P + Q = 1 and PQ = 0, the
scattering problem is divided into two ‘orthogonal’ parts, one (P) describing the open channels
and the other (Q) for the closed channels. Then, in the usual way, we have, with M = H − E,

PMP � = −PMQ� (A.1a)

QMQ� = −QMP �. (A.1b)

In the MP developed previously (Hahn and Spruch 1967), the bound property QMQ > 0 was
the key feature. The P equations generally admit a homogeneous solution, i.e. PMP�P = 0,
so that P� contains two parts, as P� = P�P + P�PQ, where the first part is independent
of the Q component, while the second part depends explicitly on Q�.

Similarly, the Q� part can also be written as Q� = Q�Q + Q�QP , where Q�Q

is the homogeneous solution, QMQ�Q = 0 and is independent of P�, while Q�QP is
the inhomogeneous solution of (3.4a) and explicitly dependent on P�. In the conventional
formulation, where the exact, and mutually orthogonal P and Q are assumed, the Q�Q is
absent, except for possible resonances. Therefore, we include this term in a curly bracket, and
write (A.1) as

PMP �PQ = −PMQ�QP − PM{Q�Q} (A.2a)
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QMQ�QP = −QMP�PQ − QMP�P , (A.2b)

which are quite symmetric in the P and Q components. The two sets are still coupled,
through the first term on the right in each equation. For the two homogeneous equations,
their normalizations are not trivial. For P�P , the asymptotic boundary condition fixes its
normalization uniquely. On the other hand, it is not obvious that the theory can fix the
normalization of the Q�Q, and this is related to the difficulty (A), as will be shown below.

To make the formal analysis complete, we go one step further and write the solutions of
(A.2) formally as

P� = P�P + GP M{Q�Q} + GP MQ�QP ≡ P�P + P�PQ, with GP = −(PMP)−1

(A.3a)

Q� = Q�Q + GQMP�P + GQMP�PQ ≡ {Q�Q} + Q�QP, with GQ = −(QMQ)−1.

(A.3b)

Again, when the term {Q�Q} is included, we have a completely symmetric situation. (A.3)
in turn give the uncoupled equations

PMPQP P�PQ ≈ P(M + MGQM)P�PQ = −PM{Q�Q} − PMGQMP�P (A.4a)

QMQPQQ�QP ≡ Q(M + MGP M)Q�QP = −QMP�P − QMGP M{Q�Q}. (A.4b)

These two equations are now uncoupled; the right-hand sides are given purely in terms of
the homogeneous solutions, so that they are determined once and for all before the coupling
between the P and the Q parts is considered. The set is of course somewhat different from the
well-known forms, because of the right-hand sides in (3.4).

An important orthogonality property emerges from the above expressions, i.e. due to the
properties of the Green functions, we have (Hahn 1969, 1970)

PMPQP P = MPQP and thus QMPQP = 0 = MPQP Q (A.5a)

QMQPQQ = MQPQ and thus PMQPQ = 0 = MQPQP, (A.5b)

and similarly

QMP�P = MP�P , since PMP�P = 0 (A.6a)

PMQ�Q = MQ�Q, since QMQ�Q = 0. (A.6b)

Thus, the two operators MQPQ and MPQP are automatically in the Q and P spaces, respectively,
even without the projections. This property (A.5), together with (A.6) which are important in
normalizing the homogeneous solutions, was used earlier in relaxing the minimum principle
by eliminating the projection operators altogether. The orthogonality property (A.6a) also
justifies the rather clumsy superscripts in the operators.
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